Ergebnis 1 bis 10 von 10

Thema: [GB] Ein Würfel wird 20

Hybrid-Darstellung

Vorheriger Beitrag Vorheriger Beitrag   Nächster Beitrag Nächster Beitrag
  1. #1
    Hui, ich fühle mich geehrt

    Vielen Dank ihr lieben, ihr seid toll *knuddel*
    Und keine Sorge, so leicht lass ich mich nicht verschrecken

    Und Lukis Schnipsel hab ich mal vorsichtshalber nicht ausgeführt, bis zum nächsten Geburtstag wäre es vielleicht fertig gewesen... (Mhm, ich könnte mal ausrechnen, wie wahrscheinlich das wäre... Nein, ich glaub das kann ich nicht und dafür bin ich zu müde... aber yeah^^)

    EDIT: Bin ich jetzt eigentlich ein W20? O.o

  2. #2
    Zitat Zitat von littlecube Beitrag anzeigen
    Und Lukis Schnipsel hab ich mal vorsichtshalber nicht ausgeführt, bis zum nächsten Geburtstag wäre es vielleicht fertig gewesen... (Mhm, ich könnte mal ausrechnen, wie wahrscheinlich das wäre... Nein, ich glaub das kann ich nicht und dafür bin ich zu müde... aber yeah^^)
    Wenn man fuer einen einzelnen Test etwa 1ms benoetigen wuerde, wuerde das ganze wohl ca. 5E+51 Millionen Jahre dauern, zumindest wenn man nicht mehrfach das selbe raten duerfte.

    95 Zeichen auf 34 Positionen ...
    95^34 Moeglichkeiten, und nur eine funktioniert ...
    Wahrscheinlichkeit: 1/(95^34) = 5.7200183256796221370745630216289 E -68
    Versuche in 1 Million Jahren:
    1000 (pro sekunde)
    * 60 (sekunden)
    * 60 (minuten)
    * 24 (Stunden)
    * 365.24 (Tage)
    * 1E6 (1 Million Jahre)
    ___________________
    3.1556736 E +16 Versuche (Hey, das ist ja fast pi \o/ )

  3. #3
    Da sieht man einen Tag nicht ins Forum...

    So, mal ganz schlicht:
    Code (Objective-C):
    int main(int argc, char *argv[])
    {
    	NSLog(@"Herzlichen Glückwunsch (nachträglich), Jelle!");
    	return 0;
    }

  4. #4
    Danke, Jeez

    Zum Thema Wahrscheinlichkeit:
    Zitat Zitat von Ineluki Beitrag anzeigen
    Wenn man fuer einen einzelnen Test etwa 1ms benoetigen wuerde, wuerde das ganze wohl ca. 5E+51 Millionen Jahre dauern, zumindest wenn man nicht mehrfach das selbe raten duerfte.

    95 Zeichen auf 34 Positionen ...
    95^34 Moeglichkeiten, und nur eine funktioniert ...
    (...)
    Also, ich hätte das jetzt so gerechnet...
    Die Chance, dass es bei einem Schritt den Satz nicht ergibt ist:

    [(95^34)-1] / [(95^34)]

    Wenn sich die Schleifendurchgängen-Anzahl n erhöht, wird die Chance immer kleiner, dass der Satz zwischendurch nicht dabei war:
    ([(95^34)-1] / [(95^34)] )^n

    Versuche nach 1 Jahr:
    * 1000 (pro Sekunden)
    * 60 (pro Minute)
    * 60 (pro Stunde)
    * 24 (pro Tag)
    * 365 (pro Jahr)
    -----------------
    n = 31536000000

    Demnach wäre die Wahrscheinlichkeit, dass es nach 1 Jahr den richtigen Satz nicht hat:

    ([(95^34)-1] / [(95^34)] ) ^ 31536000000 = 0.999996499

    Die Wahrscheinlichkeit, dass es funktioniert hat liegt bei 3.50119322 × 10-6, also bei 0.00035%.

    Nach einer Million Jahren liegt die Wahrscheinlichkeit übrigens bei 0.969838812, also nahezu bereits 97% Wahrscheinlichkeit.
    Nach 100.000 Jahren liegt die Wahrscheinlichkeit bei 30%.

    Also, ich müsste schon ziemlich alt werden, um das zu erleben, oder einfach nur sehr viel Glück haben

  5. #5
    Dein Ansatz ist natuerlich der richtige.

    Allerdings hab ich eine Maximalabschaetzung fuer den Fall keiner zwei identischen Rateversuche gemacht. Deine ist natuerlich von der Wahrscheinlichkeit her die realistischere, da mein Code mehrfach-identische Resultate zulaesst.

    Ich wuensch dir jedenfalls soviel Glueck, dass du beim starten des Programms auf anhieb die richtige Kombination triffst.

Berechtigungen

  • Neue Themen erstellen: Nein
  • Themen beantworten: Nein
  • Anhänge hochladen: Nein
  • Beiträge bearbeiten: Nein
  •