-
Drachentöter
Es ist vielleicht am einfachsten, wenn du dir immer vorstellst, wie die einzelnen Werte aussehen - ich konnte ganz am Anfang auch überhaupt nichts mit diesen ganzen Graphen anfangen, weil einfach nur gesagt wurde: So schauts aus.
Dass das ans Bein laufen kann, zeigt anscheinend auch dein Beispiel =(. Nun bin ich alles andere als ein Mathegenie, aber das befähigt mich wenigstens, dir zu zeigen, wie das Ganze für mich dann angefangen hat, Sinn zu machen.
Allerdings kann es passieren, dass ich großen Mist rede, jedenfalls wird sich bestimmt noch jemand mit Mathebegabung finden, der dir das noch besser erklären kann =3.
Zuerst mal die Grundbegriffe.
Die waagerechte Achse ist die x-Achse, auch Abzissenachse genannt und die dort ablesbaren Zahlen sind die Definition der Funktion.
Die senkrechte Achse ist die y-Achse, auch Ordinatenachse genannt und dort liest man die Werte der Funktion ab.
Dort, wo die y-Achse die x-Achse schneidet, liegt der Koordinatenursprung.
Diese Begriffe sind besonders wichtig, wenn du Funktionen dann Charakterisieren musst.
Aber bleiben wir mal bei deiner Frage
.
Im Grunde genommen ist y = x² eine vollkommen banale Gleichung, in der y von x abhängig ist, also von x definiert wird. Die Werte, die die Funktion also annehmen kann, werden davon bestimmt, wie groß x ist.
Um sich das besser klar zu machen, schreibe man sich einfach für jeden x-Wert einen y-Wert auf, bedeutet also:
x = 1 --> 1² = 1 --> y = 1
x = 2 --> 2² = 4 --> y = 4
x = 3 --> 3² = 9 --> y = 9
x = 4 --> 4² = 16 --> y = 16
usw., natürlich gehört 0² = 0 dazu.
Wenn du jetzt also bei x = 1 und y = 1 einen Punkt setzt, das gleiche für x = 2 und y = 4, sowie x = 3 und y = 9 und x = 4 und y = 16 wiederholst und die Punkte dann miteinander verbindest, hast du die rechte Seite von deinem Graphen, die sowohl in den positiven x-Werten, als auch in den positiven y-Werten liegt.
Die linke Seite setzt sich genauso zusammen, nur, dass du diesmal negative x-Werte hat, die aber beim Quadrieren positive y-Werte erzeugen (minus mal minus wird plus, folglich ist z.B. -2² = -2 x -2 = 4). So entsteht der typische Bogen einer quadratischen Funktion.
Natürlich lassen sich auf dem Graphen nicht nur natürliche, sondern auch rationale Zahlen ablesen. Du musst dir nur vor Augen halten, dass y das Resultat aus x ist. Wird also x quadriert, ist y ads Quadrat aus x. lautet die Formel y = 2x, so ist y immer das Doppelte von x (und wenn du hier wieder für x Zahlen einsetzt und die in das Koordinatensystem einträgst, wirst du feststellen, dass sie eine Gerade durch den Koordinatenursprung bilden).
Dazu sei gesagt, dass jede Funktion, die den Wert (y) 0 annehmen kann, durch den Koordinatenursprung verläuft.
Okay, soviel erstmal von mir
.
Berechtigungen
- Neue Themen erstellen: Nein
- Themen beantworten: Nein
- Anhänge hochladen: Nein
- Beiträge bearbeiten: Nein
-
Foren-Regeln